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ABSTRACT
The quasi-linear stabilization of the garden~-hose instability is
discussed from a macroscopic point of view with closure in the fluid model
obtained by neglecting the effects of heat flow. In order to keep the
problem well-posed mathematically finite Larmor radius corrections to the
conventional growth rate are retained, which leads to a natural cut-off in

the growth rate for sufficiently large wave-number,
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The quasi-linear theory of the stabilization of the garden-hose
instabilityl was first developed within a kinetic (Vliasov) framework by
Shapiro and Shevchenko2 and more recently by Sagdeev and Galeev3 and also
Kennel and Sa.gdeev.lL Since the garden-hose instability serves as one of the
simplest examples in which the principle diffusion mechanism is the adiabatic
(rather than resonant) interaction between waves and particles,3 it is of

interest to ascertain whether or not an adequate description of
stabilization is contained within the framework of a fluid model. Such may be
expected to be the case since the instability is hydrodynamic in nature with
the growth rate depending only on gross plasma properties and not on the
detailed structures of the electron or icn distridution functions. An example
where such a theory siould be of particular interest, is the well-known hydro-
magnetic theory of the solar wind,5 which disregards the possible pressure
anisotropy altogether, altliough with increasing distance from the sun, a
particle should acquire an ever larger ratio of v“/vl with respect to the
solar magnetic field direction. As a further example in which resonant wave-
particle interactions are unimportant and the primary diffusion mechanism is
the adiabatic interaction between waves and particles, V’élk6 has recently
developed a macroscopic quasi-linear theory of the symmetric two-stream
instability. In this article we follow a similar procedure for a garden-hose-
unstable plasma and in fact demonstrate that tl.e results of the kinetic theory
of Shapiroc and Shevchenko are recovered in a fluid description.

The physical situation under consideration is the propagation of low
frequency waves parallel to a uniform, external magnetic field, B., in circum-

stances where the perturbing electric field, magnetic field, and fluid
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velocities lie in the plane perpendicular to B.. Tt is well known that for
the case of isotropic particle pressures this gives rise to pure oscillatory
Alfvén waves; however, for sufficiently large average particle pressure
parallel to §O’ <P“>Z’ compared to average particle pressure perpendicular to
EO’ <PL)Z’ the wave perturbations are purely growing. The conventional growth

rate for wave~-number k, ro(k), is given by

Ezg ((P”>Z~(Pl)2)“%}
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vhere v, is the Alfven speed (Boe/kﬂ(p))l/e, (p) the average mass density, and
(P”>Z and <pi>2 denote the summation over species of the parallel and perpen-

_
dicular pressures, i.e. Z (P“j> and Z (P1j> respectively.

We assume that ingtially J
BO2
<P”>Z > (PL>Z hli i (1.2)

and consider in Section II the time evolution of a uniformly turbulent ensemble
of such garden-hose-~unstable plasmas within the framework of a multi-species
fluid model. Closure of the moment equations is obtained by neglecting the

effects of heat flow. The small parameters of the analysis are the ratios of

Pl

growth rate to Larmor frequency, and Larmor radius to parallel wavelength, i.e,
!<<1 and f 5 i<<1 . (1.3)

l
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In addition, it is assumed that the wave disturbances grow a negligible amount

in the time it takes for a thermal particle to transverse a wavelength,

. f
'—"E"‘! << l . (l.“r‘)
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Under these conditions of weak instability a quasi-linear analysis is appli-
cable in determining the reaction of the plasma to the unstable electromagnetic
field fluctuations. In particular, for purposes of describing stabilization,
the slow reaction of the average particle stresses (P”>Z and (PL>Z is of
considerable interest. To this end a coupled system of equations is obtained
describing the time evolution of <P”)Z’ <PL>Z and the spectral energy density,

WSB(k,t), in the magnetic field fluctuations, where
(5B(k. ,5)8B(k.,t)) = ¥Oo(k, ,t)5(k, +k,)
AN R Amt 27 - 1’ 12

for uniformly turbulent situations. The averaging procedure used throughout
(~/here averages are denoted by ( )) is with respect to a spatially uniform

ensemble and has been described in detail elsewhere.7’8

It should be noted,
however, that insofar as the calculations presented in this article include
only the interaction of modes with themselves and not the effects of three-
(or higher) wave coupling or nonlinear wave-particle interactions, these
ensemble averages may also be viewed as spatial avera.ges.LL The coupled system
(given by Egs. (2.32)-(2.3%)) which describes the time evolution correct to
O(l/ﬁ%z) of the quantities <P”)Z’ (P1>2 and WGB, is in agreement with the
corresponding results of Shapiro and Shevchenko2 based on a kinetic model.

The reaction of the particle stresses to the unstable electromagnetic field

fluctuations is such that the parallel (perpendicular) pressure decreases

(increases) in time until

302
(P“>2 = <P_L)Z t T (1.5)

and the system passes to a marginally stable state. In addition, it should be
noted that the results of the kinetic theory are recovered in a fluid model in

vhich closure is achieved by the neglect of heat flow. This is in contra-



Ao}

3 . . 6
tinction to the macroscopic theory of the symmetric two-stream instability

where the closure assunbtions have an appreciable influence on the time-

There is an additional point of mathematical interest
which arises with regard to this instability. We remind the reader that the
garden-hose problem with growth rate given by Eq. (l.1) is ill-posed mathe-
matically?’lo The divergent behavior of Yo(k) as |k| - » in general precludes
the existence of the inverse spatial Fourier transforms of the fluctuations
for t > 0. To this end we retain finite Larmor radius corrections to yp(k) in
the analysis of Section II. This leads to a natural cut-off in the growth-rate
for |k| ~ lko‘ where ko is given by Eg. (2.20), thus keeping the problem well-~
posed mathematically. Although this point was overlooked by Shapiro and
Shevchenko in the kinetic theory of the garden-hose instability'2 we hasten to
add that their analysis is readily amended to give the same modified growth
rate and cut-off k.. It is assumed that such corrections have been made when

0

comparing the macroscopic and kinetic theories of stabilization.

II. THEORY
(A) The Fluid Model
An exact consequence of taking velocity moments of the Vlasov equation
for the j'th species distribution function fj is the chain of equations

advancing the density nj, mean velocity Xj’ and particle stresses gd,..., i.ed

~

J
S8t z‘(njxj) =0, (2.1)
...é (n v )+V'(D..V v ) = - ..i VP .+ -{ldl-?i (E+ XJ&) (2.2)
ot MTi~g A Mg~ m, ~of m, '~ c '’
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vvhere qj and mj are the charge and mass respectively associated with the j'th

species; gJ and the heat flow tensor % are defined relative to the mean

velocity of the j'th species, for example

P. m.ff.(v—x'.)(v-v.)gx .

) J J vt e ]
In Eo. (2.3) the notation ( ) denotes diadic transpose. The electric and
magnetic fields E and B in Egs. (2.1)-(2.3) evolve self consistently through

Maxwell®s eguationc,

1 9 ,
VXE—--(;-&;—E, (Q.L)

).LJ-['\.ﬁ l a =

VXB ~~C-Z_,naqjxj +€§;€'I:]' 5 (2.))

with initial conditions

T
V'B = 0 and zg =>_‘lm n].qj .
J

In relation to Egs. (2.1)-(2.5) we consider a uniformly turbulent ensemble of
garden-hose-unstable plasmas and write each of the quantities XJ' ) gj and nj

7,8,11 .

as an ensemble average (denoted by ( )) plus a fluctuation. For example

nj is written as

n, = {n,) + dn,
J <J) J

where (anj) = 0 and (nj) is independent of position. Upon taking the average

of the equation of continuity, Eq. (2.1), it follows from the spatial unifommity




of the ensemble that (3/dt){(n.) = 0. Since the average density of the j'th
species is time-independent, if (nj)qj = 0 initially it remains so for all
times. In relation to the stabilization of the garden-hose instability, the
evolution of the particle stresses, <§j)’ will be of considerable interest.

By taking the average of Eq. (2.3) this is seen to be given by

+

) T
% %) (ng.mj) + ((yggj) -6§j)

- {eppen-amaz)}

1

2= {e s e} (2.6)

where the divergence term on Eq. (2.3) is absent in Eg. (2.6) because of
spatial uniformity of the ensemblc, We gee from Eq. (2.6) that there will
be a rapid variation of the stresses (P.) on the Qj-l time scale (where

Qj = J O/m c) unless

P.) X \B) = (B) X (P.} » 2

() x (@ = () x (&) (2.7)

Assuming relation (2.7) holds, it then follows that the form of <£b) is givenly
<£d) = (Plj>(%;gg) + (P“j)gg 3 (2.3)

where E is the unit diadic and na unit vector in the direction of the uniform
~o

]

external magnetic field B (g). Equation (2.8) is just the usual statement

~0
of isotropic pressure in the plane perpendicular to EO'
(2.7) the (slow) reaction of <£j)’ and hence (Plj> and (Pﬂj>’ is determined

From Egs. (2.6) and
from
—£—(P)+(6P vav)+((vav)-aP)

4.
...—-l - ) . .
e ({3p; x 3B/ (8B x 8F,)) (2.9)




Insofar as three-(or higher-) wave processes and the nonlinear interaction
between waves and particles are negligible, the fluctuations §£b, ij and 5B
appearing in Eq. (2.9) are to be obtained from the linearized versions of

Egs. (2.1)-(2.5). To this end we subtract from each equation its average
giving a dynamical system of equations describing the time evolution of the
fluctuations. Truncation is obtained by omitting the heat flow tensor gb from
the analysis. It may be readily demonstrated from Egs. (2.2) and (2.5) that

if the average velocity <Xj) and electric field <§) are initially zero they
remain so for all later times. Furthermore one can show that Eq. (2.7) is
preserved in time if it is fulfilled initially and if the excited wave-spectrum
is axially symmetric with regard to the direction of EO' For the case of a
non-axially symmetric spectrum we refer to the arguments given elsewhere12
which readily apply in this case, because of our assumptions (1.3). 1In the
following we shall assume these initial symmetry properties to hold. Upon
taking the spatial Fourier transform of the linearized equations for the
fluctuations and assuming that the time variation of 8nj(k,t), QXﬁ(k’t)’
§gh(k,t), 8E(k,t) and gg(k,t) is given by exp(fts(k,t')dt'),l3 where in general

s(k,t) = -iw(k,t)+y(k,t), it follows that

Snj =0, (2.10)
-iegRs 4 BY X B
8’8"Y'j=m+m. (gg+———6—‘——-), (2.11)
3V J
soP. + i((P.)-k &v. + dv., ke (P,
8k, ((B; 2k &y gys & (B,))
)
“ e (88 X Bo ~ Bo X %

J
+ (2 x 8B - 2B x (B, (2.12)




88 = -ic X X BE (2.13)
and
s
ik X 8B = b (n )a. ovJ S 8E . (2.1k4)

For simplicity of notation the argument (k,t) of the fluctuations and s(k,t)
has been suppressed in writing Egs. (2.10)-(2.14). 1In addition, <£b) has the
form given by Eq. (2.8). We also remind the reader that in the present analy-
sis the perturbations 5v., BE and ®B have been taken to lie in the plane

M‘J r ~re
perpendicular to EO with wave-vector 5 parallel to go.

(2.10), there is no charge separation associated with the perturbations

Thus, as stated by

and the field fluctuations are totally electromagnetic in nature. It is

convenient to define the quantity sz by

&P .
] ]

i
2
(o4
K,

Al

(2.15)

and introduce the notation 6A+

= + id
BA:t = BAl x 10A2

where 84 = DA e +6A e (vith e = 0) lies in the plane perpendicular to B

1~ 1R ~0
and may represent any of the fluctuations BE, Qg, Qxﬁ or QEﬂ- After some
straightforward algebra 6vj+ and 6Pj+ may be written in terms of 8E,_ from
Eqs. (2.11)-(2.14) as

i )-(p, )
xj + Pi. )~
o ((um) Eoms (BB )
8v,, = =L 8E : ) (2.16)
Jjx mj +

2
. 2 k
<(Silﬂj ) + ?Etj-;m—J <P”J >>

and
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-ik(q,/m.) 1
Py = e 6Ei{ (e )=ty

2

2
rie )2 k
<(S_lﬂj o+ w (P“J ))

In addition, from Egs. (2.11)-(2.1k4) the dispersion relation determining

. (2.17)

s(k,t) adiabatically in time (through the slow time variations of (Py.) and
fl

(Plj>) is given by

2
+4 k -
8Ly (o019 + 5 (- 2,p0)

W, J

2
- . 2 k
+iQ, + .
3 <(s 1523) T_T—nj Y (P"J >>

where w%a = hn(nj)qja/mi.

s (2.18)

Relations (2.16) and (2.17) may nov be expanded in terms of the small

THJ
the particle stresses (given by Eq. (2.9)) determined in terms of the field

parameters of the problem, ls/ﬁ%‘ and |kv ./le, and the slow reaction of

fluctuations or more specifically in terms of the spectral energy density -
associated with the field fluctuations. Let us first however direct our

attention to the dispersion relation given by Eq. (2.18).

(B) The Dispersion Relation

The upper (lower) sign in Eq. (2.18) corresponds to waves with left-
(right-) hand polarization. If Eq. (2.18) is expanded in the small parameters
|s/Qj| and IvaHj/le and only terms to 0(1/952) are retained, the dispersion
relation reduces to s° o (70)2 where the growth rate 70 is given in Eq. (1.1).
As discussed in the introduction the use of s to this accuracy constitutes an

i11-posed mathematical problem since 7° — +w for large |k|. If however, we
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retain 0(1/9,3) in the dispersion relation this difficulty is overcome since

the finite Larmor radius corrections give a growth rate which goes to zero for

large In particular, Eq. (2.18) may be written approximately as

® x 215 7s/x)-0°P v 0, (2.19)

where

2
0, T Yy
2(y"/x) <} + —ﬂ—.>
L2

.2 (2.20)

Z { ((yo/k) + W (2(p, 4)-3¢p 5 >)> +0( >}

With the neglect of O(l/Qi ) terms Eq. (2.19) predicts a growth rate ¥ and

real component w to the frequency (where s = -iw+y) given by
2~
AR (a0 ¢ 5 N W IE S N (2.21)
and
w = iyo(k/ko), k< Il (2.22)

Consequently, y reduces to 70 for |k| << fkol, passes through a maximum at
x| =+/3/2 ikol, and goes to zero for |k| = lkoi. In an order of magnitude

estimate from Eq. (2.20) k, may be scaled to the ion larmor o, . vTHi/Qi'

For v, << ¢ we obtain
A
B 02
- 2o “((P”>z-(Pl)zr Iz )
oPion’ = (n 2 )

1)m1 v'I‘Hl

which is small compared to unity in light of the assumption of small growth
rate, EQ. (l.%). Thus the maximum garden-hose unstable wavenumber is consider-
ably less than the inverse ion larmor radius pion-l' Insofar as O(l/ﬁ%h)

terms are negligible Eq. (2.19) gives a pure oscillation and zero growth rate




for |k| 2 lkol, that is to say, y ¥ 0 for |X i < ix} <« fiy 1 e may now

on

Proceed to describe the long wave-length stabilization process within the
context of the modified growth rate given by Eq. (2.21). The consequence of
retaining finite Larmor radius corrections to the usual dispersion relation
has been to introduce a cut-off ko in the growth rate and make the problem
well-posed mathematically., In view of Expression (2.20) it should be noted
that any argument whereby 7o(k,t) - 0 asymptotically in time involves a

corresponding decrease to zero of the maximum garden-hose-unstable wave-number

ko, that is to say a shrinking to zero volume of the unstable domain in k-gace.

(C) The Stabilization Process

In determining from Eq. (2.9) the reaction of the particle stresses

7

\£b) to the unstable fluctuations we expand GPj+ and dv,, in the small para-

J*
meters Is/gj[ and ‘vaHj/gﬁ" This readily gives

. (P, )-(py.) (P, ) 2<P
8P, (-ik);';-ﬁEi{ li“ ls” . 'L’ + o( >} (2.23)

iq.s
J J

4

and

8vjt

uz

2
2 K
s - ( ");'"- ((P .)"(P.L.))
—laE { L i i I3 ’ +o<—-l—3>}. (2.24)
Q.

+
J "lﬂ,j SSZJ.E

Taking the double outer product of Eq. (2.9) with nn gives the time rate of
change of <P”j>' After some straightforward algebra making use of Eg. (2.13)

this simply yields

—  q, i(k,+k, )z
a >—lﬂdkdke 172

”J) __J mjc 1772
P e

-i k
X ’ ><5E (),4)8P;_ (X ,t)+6E_(lil,t)an+(k2,t)) (2.25)
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where ; denotes summation over right- and left-hand modes of polarization.
P

The quantities 6Pji appearing in Eq. (2.25) nay be rewritten in terms of OE,

by means of Expression (2.23), i.e.

2 .
5 1 d. 1(kl+k2)z
% ) =), L [ e, e
P J

ik, (P )-(Rys) 2(py )Ry ) (él
+ o{—=¢
a,° + 33)}

X :
s(kl,t) ilgjs(kz,t)

X (8E+(kl,t)6E_(k2,t) + 6E_(kl,t)6E+(k2,t)) (2.26)

The average in Eq. (2.26) is simply related to the spectral energy density,

«B(x,t), in the electric field fluctuations through

(8E, (k) ,£)OE_ (k,,t)+0E_(k;,)8E, (k,,t)) = 2(8E(k, ,t)+8E(ky,t))

= 2% (i, 808 (1 4k,) (2.27)

the 6(k1+k2) factor in Eq. (2.27) being a manifestation of the spatial uniform-

ity of the ensemble., Upon using the Maxwell equation (2.13) and the symmetry
*

property s(-k,t) = s (kx,t), the spectral energy density YGE(k,t) may be

related to the energy density in the magnetic field fluctuations through

2
Is[® 488 _ OF (2.28)
52
ck

Neglecting O(l/st) terms in Eq. (2.26) and noting that the first term vanishes

in the summation over polarizations, Eq. (2.26) may be written in terms of

¥8(k,t) (= ¥°2(-k,t)) as

5B
3 J[ ¥x,t)
. = . ")'" . . 02
5 (P“J> (2<Pla) (P”J)) dk 7(k,t) - (2.29)
¢}
Similarly, by taking the double outer product of Eq. (2.9) with~% (I-nn), the

evolution of <Plj> nay be shown to be given by



1k

i(k +k, )z
S ¢ sc (P.) = }: ks d, 12
j .Z}

-1k
x-{ L (v, (1) £)8P_(k,,t)46v_(i) )62, (k,,t))

+ E;ESQK;J (5E, (k,,t)8P (k,,t)+3E (k,,t)oP. (k t))}- (2.30)
Skl,t + l" . L s K +18os . 2o

Neglecting 0(1/933) terms as before Eq. (2.30) readily reduces to

OB
v
o k,t
2 () = (o) Jax 7ty L) (2.31)
B
0
In writing (2.29) and (2.31) we have dropped the summation over polarization

notation since y(k,t) is the same for both right- and left-hand waves. The
spectral density YgB(k,t) includes both polarizations.

In view of the expression for the growth rate, Eq. (1l.1l), or the more
accurate version, Eq. (2,21), the evolution of the total parallel and perpen-
dicular pressures, (P”)Z and <PL)Z’ is of special interest. Within the

accuracy of Egs. (2.29) and (2.31) we have that

§<W&=<ah&awng&7@¢)§%§, (2.32)
and WBB °
3 (7)) = (elg fax rtee) L (2.33)
These must be solved in conjunction with i
<2 () = 29(,8)8°(k,0) (2.34)

describing the volution of the spectral energy density in the magnetic-field
fluctuations.
The stabilization process may be simply summarized as follows. By

hypothesis 7 is initially positive for the range of wave-number under
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consideration, as is the encrgy density YBB(k,t). Thus, as long as
fax 7(k,t)‘1/5B(k,t) is non-zero, it follows from Egs. (2.32) and (2.33) that
5% <PH>Z <0,
and
-5% (P_L)Z >0,
That is to say, the reaction of the particle stresses to the unstable electro-
magnetic field fluctuations is such as to cause the parallel (perpendicular)
pressure to decrease (increase) monotonically with increasing time. In light
of the definition of growth rate given by Egs. (2.21) and (1.1), this is in
the direction of stabilization. The time-asymptotic state predicted by Eags.

(2.32)-(2.34) is thus one for which

7(k,t »w) 50, (2.35)

and

n

B
(P”(W))z = (P (=))y + —g; . (2.36)

As previously indicated this stabilization process involves a concurrent
shrinking of the unstable domain of k-space to zero volume, i.e. ko(t - ) - QO
From Eq. (2.34) the energy density YSB begins to grow (from non-zero initial
value) in the initially unstable region of k-space. As time proceeds, the
growth rate decreases and the unstable region shrinks in volume; finally as
t — o we are left with a stationary spectrum of magnetic field fluctuations,
¥*B(x, ).

Such are the gqualitative features of the time development and time-

2,3,4

asymptotic state. With certain approximation methods, and energy conser-

vation relations® associated with Egs. (2.32)-(2.34), a more detailed
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quantitative description may also be given. As stated in the introduction, in
Obtaining the coupled system (2.32)-(2.34) we have recovered the corresponding
results of Shapiro and Shevchenk02 based on a kinetic model. Moreover this
has been done within a fluid framework which achieves closure by omitting the
heat flow tensor Q from the analysis. In conclusion, we remind the reader
that in the analy:is presented here mode coupling effects have been assumed
negligible on the time-scale in which linear stabilization takes place. Once
7(k,t) - 0 however, such higher nonlinear effects will become important and

cause further change in the spectral energy density YSB.
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